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MATRIX COMPOSITION AFFECTS THE SPATIAL ECOLOGY OF A

PRAIRIE PLANTHOPPER
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Abstract. To date, there is alack of well-controlled field experiments that disentangle
the effects of the intervening matrix from other landscape variables (e.g., patch geography
or quality) that might influence animal dispersal among patches. We performed a field
experiment to investigate how the movement of a delphacid planthopper (Prokelisia crocea)
among discrete patches of prairie cordgrass (Spartina pectinata) is affected by the com-
position of the matrix (mudflat, native nonhost grasses, and the introduced grass smooth
brome [Bromus inermis]). Within each matrix type, marked planthoppers were released
onto experimental cordgrass patches that were made identical in size, isolation, and host
plant quality. We found that the emigration rate (planthoppers lost per patch per day) was
1.3 times higher for patches embedded in the two nonhost grass matrix types than for
patches in mudflat. The rate of immigration (immigrants per patch per day) into patches
isolated by 3 m was 5.4 times higher in the brome than in the mudflat matrix. Patches in
the native grass matrix had intermediate immigration rates. In addition, a survey of plant-
hopper distributions in nature revealed that both the within- and among-patch distributions
of the planthopper were related to the composition of the matrix. Within patches, individuals
accumul ated against mudflat edges (relative to patch interiors) but not against nonhost grass
edges. Among patches, incidence and density increased with the proportion of the matrix
composed of open mud. The matrix was equal to that of patch geography (size and isolation)
in its ability to explain the distribution of the planthopper. We suggest that the low per-
meability of the mudflat relative to a nonhost grass edge may explain these planthopper
distributional patterns. Also, because natural cordgrass patches in mudflat were richer in
nutrients than those in nonhost grasses, planthoppers may have been more likely to remain
and build up densities on the former patches. We predict that the displacement of native
matrix types by invasive brome will result in increased connectivity and greater spatial
synchrony in densities of planthoppers among cordgrass patches.

Key words:  connectivity; edge effects; edge permeability; emigration; immigration; matrix; patch
quality, planthoppers; Prokelisia crocea; Spartina pectinata; spatial distribution; tallgrass prairie.

INTRODUCTION

For patchily distributed populations, the rate of in-
terpatch dispersal (i.e., patch connectivity) is a critical
factor influencing patterns of patch occupancy and re-
gional population dynamics (Hanski 1994, 1999, Sta-
cey et al. 1997). The majority of metapopulation studies
have emphasized the importance of patch size and iso-
lation on the movement of animals among patches,
while ignoring the effect of the intervening habitat, i.e.,
the matrix (Taylor et al. 1993, Wiens 1997, Tischendorf
and Fahrig 2000). In contrast, recent field studies on
insects have revealed dramatic effects of the matrix on
interpatch movement or connectivity (e.g., Jonsen et
al. 2001, Ricketts 2001). Jonsen et al. (2001), for ex-
ample, found that colonization of leafy spurge patches
(Euphorbia esula) by an Apthona flea beetle was much
greater within a grass than a shrub matrix. Heteroge-
neous dispersal rates, owing to differences in matrix
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composition, theoretically can have complex effectson
theregional dynamics of a subdivided population (Gus-
tafson and Gardner 1996, Vandermeer and Carvajal
2001).

By affecting movement patterns, the composition of
the matrix may influence not only the among- but also
the within-patch distribution of animals. High patch
occupancy rates and/or densities may be promoted by
a matrix favoring high patch connectivity (via the re-
colonization of vacant patches and the rescue effect
[Levins 1970, Brown and Kodric-Brown 1977]), or by
amatrix that inhibits emigration (Kuussaari et al. 1996,
Cronin 2003a). Within patches, the matrix may affect
the distribution of a species by influencing the flow of
individuals across the patch edge. Some matrix types
may make the patch edge hard (i.e., inhibit emigration;
[Stamps et al. 1987]) and cause organisms to aggregate
near the patch perimeter (Cantrell and Cosner 1999),
whereas other matrix types may favor softer patch edg-
es and no density edge effect. Although edge effects
can significantly influence species interactions and
community structure (Fagan et al. 1999), few studies
have examined whether they are matrix dependent (but
see Tscharntke et al. 2002, Cronin 2003a).
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Despite the recent emphasis on the effects of matrix
composition on dispersal and spatial population dy-
namics, there is a lack of well-controlled field exper-
iments that disentangle the effects of the matrix from
other landscape variables that might influence dispers-
al. To date, the mgjority of matrix studies have focused
on the dispersal of organisms among patches in natural
landscapes (e.g., Moilanen and Hanski 1998, Roland
et al. 2000, Jonsen et al. 2001; but see Karieva 1985).
Under these circumstances, there is a risk that matrix
composition may be confounded with other landscape
features such as patch geography or quality. For ex-
ample, patches embedded in a bare matrix may berich-
er in nutrients than patches embedded in aforest matrix
(as a result of reduced competition for nutrients and
light, different soil conditions, etc.). In a recent liter-
ature review (K. J. Haynes and J. T. Cronin, unpub-
lished manuscript), we found that 60% of the studies
(6 out of 10) failed to experimentally or statistically
isolate the effects of the matrix from potential patch-
quality effects on herbivore dispersal. To isolate the
effects of matrix types on patch connectivity, studies
are needed that account for variability among patches,
e.g., by using experimentally created patches.

In this study, we experimentally tested the hypoth-
esis that the movement of the planthopper Prokelisia
crocea Van Duzee (Hemiptera: Delphacidae) among
patches of its host plant, Spartina pectinata Link (Po-
aceae), isdirectly influenced by the type of matrix with-
in which the host plant patches are embedded. We cre-
ated experimental networks of cordgrass patches that
differed only in the type of matrix within which the
patches were embedded (mudflat, a mixture of native
grasses, or theintroduced grass BromusinermisLeyss).
Among matrix types, we tested for differences in em-
igration and immigration rates of marked planthoppers.
In addition to the field experiment, we used census data
as the basis for testing whether the within- and among-
patch distributions of planthoppers were correlated
with matrix type in accordance with the predictions
from the above field experiment. We also assessed
whether the matrix was of more, less, or equal impor-
tance to patch geography (size and isolation) in af-
fecting the spatial distribution of these planthoppers.
Finally, we addressed how changes in the structure of
the matrix, particularly through the invasion and spread
of exotic plant species, may influence the planthopper’s
regional population dynamics. Prokelisia crocea rep-
resents a model organism for testing metapopulation
or landscape theory because: (1) the planthopper pop-
ulation is naturally subdivided among very discrete
host plant patches that are embedded in very distinct
matrix types, (2) dispersal is two dimensional and oc-
curs over small distances of <100 m (Cronin 2003b),
and (3) the characteristics (e.g., size, nutritional qual-
ity) and spatial arrangement of patches are easily ma-
nipul ated.
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METHODS
Prairie landscape and life history

Prairie cordgrass is a native species associated with
hydric grasslands and marshes of North America
(Hitchcock 1963). In the tallgrass prairies of North Da-
kota, cordgrass grows in discrete patches ranging in
size from single stems to 4-ha monospecific stands
(Cronin 2003a, ¢). The matrix within which these
patches are embedded can be classified into three main
vegetation types (Fig. 1): (1) periodically flooded mud-
flats sometimes dominated by saltwort (Salicornia rub-
ra Nels.), (2) mixtures of predominantly native grass
species of similar height (primarily foxtail barley Hor-
deum jubatum L., western wheatgrass Agropyron smi-
thii Rydb., and little bluestem Andropogon scoparius
Michx.), and (3) nearly monospecific stands of smooth
brome (B. inermis). Brome has become established in
the Great Plains of the United States and Canada by
invading disturbed prairie (D’Antonio and Vitousek
1992), and through repeated introductions to prevent
soil erosion and provide animal graze (Wilson 1989,
Larson et al. 2001). Brome is similar in stature and
appearance to cordgrass, and both species are markedly
taller than most native grasses (Wilson and Belcher
1989 and Fig. 1). At our study areas, the matrix is
composed of ~30% mudflat, 40% native nonhost grass-
es, and 30% brome.

The planthopper’s biology is described by Holder
and Wilson (1992) and Cronin (2003a, b, c). The plant-
hopper is a phloem-feeding specialist of cordgrass and
isthe plant’s most common herbivore. In North Dakota,
the planthopper exhibits two distinct generations per
year, with peaks in adult abundance in mid-June and
early August. Adults are wing-dimorphic, but popu-
lations are >90% macropterous. The adult stage lasts
approximately three weeks, during which time females
lay eggs along the midrib of the adaxial surface of
cordgrass leaves.

Matrix types and dispersal

The effects of the matrix on planthopper movement
among cordgrass patches was experimentally tested
within the drainage system associated with the Kelly’s
Slough National Wildlife Refuge (located 16 km west
of Grand Forks, North Dakota, USA). In Kelly's
Slough, the three matrix types occupy different regions
of the prairie. Mudflats tend to be a few decimeters
lower than other matrix habitats, but otherwise there
are no observable differences in slope, aspect, or wind
exposure among matrix types that might influence
planthopper movement (K. J. Haynes, unpublished
data). Within each matrix type, we created networks
of small, experimental host plant patches each con-
sisting of a central patch surrounded by eight satellite
patches positioned 3 m away and equal distances apart.
Cordgrass used in the experimental patches was ob-
tained as small rhizomatous shoots excavated at the
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beginning of the spring from the same source patch.
Shoots were potted in 12 X 12-cm pots using ProMix
BX (Premier Horticulture Limited, Riviére-du-Loup,
Québec, Canada) potting soil and propagated under
identical conditions in an outdoor garden. Each ex-
perimental patch consisted of four pots in a 2 X 2
arrangement that was sunk flush to the ground. Six
cordgrass stems, 0.5-0.75 m in height, were present in
each pot. Although patches of this size are small rel-
ative to the range found in nature (1 stem to 4 h), the
frequency of occurrence of these small patches (=0.10
m?) is 10% (Cronin 2003b). Patch networks were po-
sitioned at least 25 m away from natural cordgrass
patches.

The planthoppers were collected with a sweep net
from nearby cordgrass habitat, chilled during transport,
and then marked with Daygl o fluorescent powder (Day-
glo Corporation, Cleveland, Ohio, USA). The marker
was visible on planthoppers after a week in the field,
even after heavy rains, and did not reduce planthopper
survivorship or dispersal in laboratory experiments
(Cronin 2003b). In order to minimize mortality, plant-
hoppers were marked and released within an hour after
collection. Planthopper movement was slow at first, and
generally involved walking or hopping onto the cord
grass stems. Fewer than 1% of the marked planthoppers
left the patch immediately after their release (K. J.
Haynes, unpublished data).

For each replicate, we released 500 adult female
planthoppers (~20 per stem). Males were not included
in the study because they were scarce relative to fe-
males and are potentially less important to the spatial
spread of the species. Thelack of malesin experimental
patches likely did not bias female movement patterns
because (1) mate searching is primarily a male trait in
planthopper species (Denno et al. 1991), and (2) most
females are mated prior to dispersal (Cronin 2003b).
This release density was high relative to the levels nor-
mally observed at Kelly’s Slough (typically ~0.1 plant-
hoppers per stem [Cronin 2003b]), but was not outside
the range of densities observed in more productive sites
nearby (annually, densities exceed 40 planthoppers per
stem in some patches; J. T. Cronin, personal obser-
vation). Because the planthopper’s emigration rate is
density dependent and high for small patches (Cronin
2003b), we anticipated high emigration rates in this
study.

To assess rates of emigration and immigration,
counts of planthoppers on each patch were made at 24,
48, and 72 h postrelease. Planthoppers found on sat-
ellite patches were aspirated from the plants to avoid
recounting them during subsequent inspections. Plant-
hopper loss from the central release patch can be at-
tributed to both emigration and within-patch mortality.
Because predators were scarce on experimental patches
in all matrix types, and the type of surrounding matrix
was found to be unrelated to the density of a major
group of generalist predators (spiders) in natural cord-
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grass patches (J. T. Cronin, unpublished manuscript),
we assumed that within-patch mortality was matrix in-
dependent; thus, differences in the number of plant-
hoppers lost from release patches were attributed to
differences in emigration rates. Colonization of satel-
lite patches was measured in two ways: theimmigration
rate (number of immigrants per patch per day), and
dispersal success. Dispersal success (= [summed num-
ber of immigrants on all eight satellite patches]/[num-
ber released — number remaining on central patch])
was based only on those individuals that disappeared
from the central patch, and thus accounts for potential
differences among matrix types in the number of em-
igrants departing from the central release patch. We
carried out eight replicate releases in each matrix type
over two planthopper generations (five during May and
June 2001 and three during August 2001). Onereplicate
release per matrix type was completed before initiating
a new set of replicates; the order of releases among
matrix types was determined by random draw. Differ-
ences in mean emigration, immigration, or dispersal
success among matrix types were evaluated with sep-
arate randomized block ANOVAS, in which matrix type
was a fixed main effect and generation was a blocking
effect (Kirk 1995). Multiple-comparison tests among
the three matrix types were performed using Tukey’s
HSD test (Day and Quinn 1989).

For the analyses of emigration loss, we used the 24-h
recapture data because the majority of the emigration
events occurred within this period. On the other hand,
immigrants accrued at a more constant rate over the
three-day length of the experiment. Therefore, the im-
migration rate and dispersal success were based on the
cumulative number of immigrants captured in 72 h.
Both the immigration rate and dispersal success were
In-transformed to normalize their distributions and ho-
mogenize variances among matrix treatments.

Within-patch distribution

To determine if the planthopper’s within-patch dis-
tribution was related to the matrix type, we censussed
planthopper densities at the edges and interiors of 14
mudflat-bordered and 12 nonhost grass-bordered patch-
es (composed of brome and/or native grasses) in 2000.
All patches were >40 m? in area. The census was con-
ducted within the Kelly’s Slough National Wildlife Ref-
uge drainage. A second census was conducted in 2001
and included 10 patches from each of the three matrix
types. For each census, we estimated adult femal e den-
sity per stem at two paired locations within each patch,
at the edge and at 2 m into the interior (detail s provided
in Appendix A).

We tested whether the within-patch distribution of
planthoppers varied among matrix types by performing
an ANOVA on the ratio of female density at the patch
edge to the average density for the whole patch: edge/
[(edge + interior)/2]. We used the edge-to-patch mean
ratio instead of edge-to-interior ratio because some
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patch interiors had zero densities. In addition, thisratio
was approximately normally distributed and homoge-
neous in variance. Within a matrix, an edge effect was
deemed present if the 95% confidence intervals around
the density ratio did not overlap 1.0.

One possible explanation for within-patch differenc-
esin planthopper distributions among matrix types may
be that plant quality at the edge and interior of patches
differs among matrix types. Immediately following the
density census in 2000, we randomly selected three
cordgrass stems from the edge and 2 m into the interior
of each patch, and collected the topmost unfurled leaf.
The leaves were immediately placed on dry ice, and
later stored in an ultracold freezer at —70°C. Samples
were subsequently lyophilized (72 hours) and ground
in a Wiley mill. Elemental analysis using gas chro-
matography was performed by the Agricultural Ser-
vices Laboratory at Pennsylvania State University to
determine percent nitrogen (percent dry mass) of
leaves. For planthoppers, nitrogen content of leavesis
considered to be a strong index of plant quality (re-
viewed in Cook and Denno 1994). Differences among
matrix typesin the ratio of percent nitrogen at the patch
edge to the mean for the whole patch was evaluated
with aone-way ANOVA (see previous paragraph). For
patches within each matrix, an edge effect was deemed
present if the 95% confidence intervals about this ratio
did not overlap 1.0.

Among-patch distribution

The relationship between patch geography (size, iso-
lation) and the among-patch distribution of planthop-
pers was determined from a five-generation census
(1999-2001) of 25-142 discrete cordgrass patches in
Site 104, 20 km west of Grand Forks, North Dakota
(Cronin 2003c). In this study, we estimated the mean
number of planthopper eggs per cordgrass stem as well
as the presence or absence of eggs for each patch and
generation (Appendix B). For each focal patch, we
measured its size (in square meters), isolation from the
nearest neighbor patch in each of four quadrants (a
function of the linear distance to, and size of, each
neighbor [Cronin 2003b]), and the composition of the
surrounding matrix. The quantification of each of these
measures is described in detail in Appendix B. Because
mudflat was deemed to be the most different landscape
feature in terms of its effect on planthopper movement
(see Results), our index of the matrix was the propor-
tion of a 3-m buffer surrounding a patch that was com-
posed of mudflat. Moilanen and Hanski (1998) used a
similar approach to quantifying the matrix for the Glan-
ville fritillary (Melitaea cinxia). In a previous analysis
of these census data, Cronin (2003b) found that plant-
hopper egg densities and patch occupancy rates gen-
erally increased with increasing patch size and egg
abundance in the previous generation, but were unaf-
fected by isolation. Averaged across generations, the
regression models used by Cronin (2003b), which ig-
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Fic. 1. Prairie cordgrass (Spartina pectinata; back-
ground) and the three main matrix types (foreground) within
the drainage system associated with the Kelly’s Slough Na-
tional Wildlife Refuge, North Dakota, USA. (A) Open mudflat
dominated by the low-lying herb Salicornia rubra. (B) A
mixture of native nonhost grasses, of intermediate height and
complexity. (C) The invasive grass smooth brome (Bromus
inermis), similar in structure and appearance to prairie cord-
grass. (Photographs by K. J. Haynes.)

nored matrix effects, explained 19.5% of the variation
in egg densities and 10.0% of the variation in patch
occupancy rates. Here, we reanalyzed these census
data, but included matrix composition in the models.
For each generation, the influence of patch size, iso-
lation, planthopper abundance (density or patch oc-
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cupancy) in generation t — 1, and matrix composition
was determined for two dependent variables: plant-
hopper egg densities (using multiple least-squares re-
gression) and whether or not a patch was occupied by
planthoppers in generation t (using logistic regression)
(see Appendix B). In addition to determining whether
patch density or occupancy was influenced by the ma-
trix, these tests also allowed us to evaluate the relative
contributions of the matrix and patch geography var-
iables (size, isolation) to explaining the among-patch
variation in planthopper abundance. The relative con-
tribution of each variable was determined as the ab-
solute change in R? after the removal of one variable
from the model (i.e., R2, — Ria_1)-

REsuLTS
Matrix type and dispersal

The loss rate of planthoppers from the release patch
differed significantly among the matrix types within
which the cordgrass patches were embedded (F,,, =
18.42, P < 0.001, Fig. 2A). Patches embedded in mud-
flat lost 25.8% fewer planthoppersin a 24-h period than
patches embedded in either native grass or brome (Tu-
key’'s HSD, P < 0.001). Loss rates from patches in
both grass matrix types were high but equivalent (P >
0.99). From the first planthopper generation to the sec-
ond (blocking factor), the loss rate of planthopperswas
indistinguishable (F,,, = 1.41, P = 0.25).

Immigration rates for satellite patches located 3 m
from a source patch were low overall (mean = 1 sk,
1.04 = 0.22 immigrants per patch per day), but varied
significantly with matrix type (F,,, = 7.94, P = 0.003,
Fig. 2B). Mudflat- and brome-embedded patches had
the largest difference in immigration: the rate was 5.4
times higher in the latter than in the former matrix
(Tukey’s HSD, P = 0.002). Intermediate rates of im-
migration occurred within the native grass matrix; how-
ever, the rate in the native grass matrix was not sig-
nificantly different from the rates for the mudflat (P =
0.13) or brome (P = 0.15) matrix. Although loss rates
were similar between planthopper generations, the im-
migration rate decreased significantly from the first to
the second generation (a mean decline of 1.0 plant-
hopper; F,,, = 15.21, P = 0.001). Dispersal success,
the percentage of planthoppers lost from the central
patch that dispersed onto any of the eight satellite
patches, differed significantly among matrix types (F,
= 7.60, P = 0.004) in qualitatively the same manner
as the number of immigrants. After accounting for the
high rate of emigration from brome- as compared to
the mudflat-embedded patches, we found that propor-
tionately more emigrants successfully dispersed into
the satellite patches in the former than in the latter
matrix (Tukey’s HSD, P = 0.002, Fig. 2C).

Within-patch distributions

In 2000, the within-patch distribution of planthop-
pers varied significantly with the type of matrix bor-
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Fic. 2. Effects of the three matrix types on interpatch
movement: (A) rate of planthopper loss from arelease patch;
(B) rate of immigration onto satellite patches; (C) percentage
of planthoppers lost from the central release patch that suc-
cessfully immigrated onto any of the eight surrounding sat-
ellite patches. Data are means = 1 se. Loss was calculated
using the 24-h recapture data because the majority of the
emigration events occurred within this period. In contrast, the
immigration rate and dispersal success were based on the
cumulative number of immigrants captured in 72 h, because
immigrants accrued at a more constant rate over the three
days of the experiment. Different letters denote significant
differences at the 0.05 level.

dering the patch (F, ,, = 14.63, P = 0.001). Planthopper
densities were significantly higher at the edge than the
interior of mudflat-bordered patches, but no edge effect
was detected for patches bordered by nonhost grasses
(Fig. 3). On average, densities (interior and edge com-
bined) in patches bordering mudflat were comparable
to those in patches bordering nonhost grass (2.9 + 0.7
planthoppersvs. 1.9 = 0.2 planthoppers per 100 stems,
respectively; t,, = 0.40, P = 0.69). In 2001, planthop-
per densities were low (53.6% lower than in 2000),
with zero densities in ~10% of the samples. We lacked
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Fic. 3. Ratios (and 95% confidence intervals) of female
density at the patch edge to mean patch density, or leaf ni-
trogen content at the patch edge to mean patch leaf nitrogen
content, for patches embedded in a mudflat or a mixture of
nonhost grasses (native grasses and brome). An edge—interior
difference was deemed significant if the 95% confidence in-
tervals did not overlap 1.0.

the statistical power to adequately test for the presence
of edge effects in this second year; however, no trends
were evident.

Leaf nitrogen levels, measured during 2000, were
significantly higher at the edge than the interior for
patches bordered by both types of matrix (Fig. 3). The
magnitude of the nitrogen edge effect did not vary
significantly between matrix types (F,,, = 2.30, P =
0.143). Overall, leaf nitrogen levels in mudflat-bor-
dered patches were 10% higher than in nonhost grass-
bordered patches (1.59 = 0.05% vs. 1.44 = 0.04%,
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respectively; t,, = 2.58, P = 0.017). Finally, the cor-
relation between mean planthopper density and mean
percent nitrogen was positive but not significant
(Spearman’s rank correlation, Rg = 0.16, P = 0.268).

Among-patch distribution

Based on our analysis of the distribution of plant-
hopper egg densities among cordgrass patches, we
found in all five generations that density increased with
an increase in the proportion of mudflat in the matrix
(Table 1); however, in only two of five generations was
this effect significant. Overall, adding matrix compo-
sition to aregression model that already included patch
size, isolation, and density in the previous generation
(Cronin 2003b) improved the model fit from 19.5 =+
4.9% to 25.8 = 6.1%, an increase of 6.3% (based on
R? values; Table 1). On average, the matrix, patch size,
and density at t — 1 contributed equally to explaining
the variation in egg densities among patches (means of
7.4, 6.3 and 7.2%, respectively, based on tests with all
variables included). Similarly, patch occupancy rates
increased significantly with the proportion of mudflat
in the patch matrix in 3 of 4 generations (Table 1). The
inclusion of matrix heterogeneity in the model also
resulted in a small but significant improvement in the
explanatory power of the model: McFadden’s p? (the
logistic regression equivalent of the coefficient of de-
termination; see Appendix B) increased by 7.6 + 3.3%
over amodel without the matrix effect. All independent
variables, excluding patch isolation, explained roughly
equal percentages of the variation in patch occupancy
(~4%).

The effect of the matrix was more compelling when
evaluated over the course of the five-generation study.
The proportion of generations in which a patch was
occupied was strongly influenced by the matrix, in-
creasing significantly with the proportion of the nearby
matrix composed of mudflat (n = 105, P < 0.001, Fig.

TaBLE 1. The effect of matrix composition, patch size, isolation, and planthopper density in generationt — 1 on planthopper

egg densities or patch occupancy in generation t.

Dependent Full model Size Isolation Generation Matrix
variablet Generation n Rt P P P t-1P P AR?§
Density 1999-11 25 0.305 0.50 0.012 0.954 0.114 0.076
2000-1 95 0.068 0.093 0.276 0.345 0.031 0.049
2000-I1 95 0.403 <0.001 0.003 0.055 <0.001 <0.001 0.152
2001-1 101 0.342 <0.001 0.001 0.564 0.04 0.002 0.069
2001-I1 138 0.171 <0.001 0.006 0.064 0.004 0.617 0.002
Occupancy 1999-11 25
2000-1 98 0.190 0.004 0.413 0.204 <0.001 0.165
2000-I1 98 0.267 <0.001 <0.001 0.351 0.004 0.353 0.012
2001-1 101 0.153 <0.001 0.004 0.409 0.591 <0.001 0.088
2001-I1 138 0.082 0.013 0.460 0.017 0.965 0.011 0.04

Note: Significant P values after using a sequential Dunn-Sidak correction to adjust for inflated Type | error are indicated

in boldface (see Appendix B).

T Least-squares regression was used for egg density, and logistic regression was used for patch occupancy.
T We report McFadden’s p? instead of R? for logistic regressions.
8§ The factor AR? is the absolute change in model R? after removing the matrix variable from the model with all variables

included.
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FiGc. 4. The relationship between the proportion of plant-
hopper generations in which a patch was occupied and the
proportion of nearby matrix that consisted of mudflat. To
indicate the effect of the matrix alone, the residuals from a
regression model including only patch size and isolation were
regressed against the matrix variable (proportion occupied
(residuals) = 0.18 X In(proportion mudflat) + 0.3, n = 105,
R? = 0.24).

4). The addition of the matrix variable to a model that
included patch size and isolation (Cronin 2003b) in-
creased the model R? from 26.1 to 44.1%. The matrix
and patch size each explained ~17%, and isolation
explained 10%, of the variation in patch occupancy
rates.

Discussion
Matrix effects on dispersal

After controlling for most variables thought to in-
fluence interpatch movement, i.e., insect density and
patch characteristics (size, isolation, stem density and
quality), we found that planthopper movement differed
substantially among matrix types. Emigration was 1.3
times higher, and immigration into patches 3 m away
was 5.4 times higher, for brome-embedded patchesthan
for mudflat-embedded patches (the two most disparate
matrix types; Fig. 2). Similarly strong effects of the
matrix on dispersal have been reported for a diversity
of insect species including beetles (e.g., Kareiva 1985,
Bach 1988, Jonsen et al. 2001), butterflies (e.g., Kuus-
saari et al. 1996, Ricketts 2001), and a bush cricket
(Kindvall 1999). However, it is unclear from the ma-
jority of these studies whether the observed effects
were due purely to differences among matrix habitats
or to some other factor that may have been confounded
with the matrix (K. J. Haynes and J. T. Cronin, un-
published manuscript). In our study system, matrix
type and patch quality (in terms of leaf nitrogen con-
tent) were interrelated in natural (but not experimental)
patches: mudflat-embedded patches were 10% richer in
nitrogen levels than patches embedded in matrix com-
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posed of nonhost grasses. Reduced interspecific com-
petition or nutrient-rich soils may have been respon-
sible for the higher nitrogen levels of patches in mud-
flats. We might expect to find similar patch quality
differences in other study systems, particularly those
with distinctly different matrix types (e.g., a grass vs.
shrub matrix; Jonsen et al. 2001). Of the few studies
that have evaluated the relationship between matrix
composition and patch quality, all of them (3 out of 3)
found that these two landscape factors covaried (K. J.
Haynes and J. T. Cronin, unpublished manuscript). Be-
cause patch quality is known to influence emigration
(Cook and Denno 1994, Kuussaari et al. 1996, Fownes
and Roland 2002) and immigration (Matter and Roland
2002), differences in patch connectivity among matrix
types may be due, partially or wholly, to plant-quality
effects. Therefore, studies that control for patch quality
(this study; Kareiva 1985, Bach 1988) are necessary
to disentangle the role of the matrix from other con-
founding factors (K. J. Haynes and J. T. Cronin, un-
published manuscript).

Although we have controlled for heterogeneity in
patch characteristics while varying matrix type, it is
conceivable that differences in planthopper movement
among the matrix types could be attributed to site dif-
ferences (e.g., soil conditions, elevation differences)
rather than the matrix itself. This possibility arises be-
cause each matrix type occupied different regions of
Kelly’s Slough (owing to the natural distribution of
matrix types), and therefore experimental replicatesfor
each matrix type were also spatially divided. However,
two independent lines of experimental evidence argue
against the possibility that site differences were re-
sponsible for the observed matrix effect. First, at an
experimentally created cordgrass—matrix boundary
(derived from potted cordgrass, brome, or mud), in-
dividual planthoppers were significantly morereluctant
to emigrate into the mudflat than the brome matrix (K.
J. Haynes, unpublished data). Second, in a large-scale
field experiment (distances between patches ranging
from 5 to 50 m), in which cordgrass patches and the
matrix (mudflat or brome) were experimentally de-
rived, we also found higher connectivity among patches
in brome than in mudflat (J. T. Cronin, unpublished
data). In total, our three independent experiments pro-
vide compelling evidence that the composition of the
matrix is the causal agent affecting planthopper move-
ment.

For the planthopper, both emigration and immigra-
tion tended to increase with the structural complexity
of the matrix (see Fig. 1). Relatively few planthoppers
moved into and out of patches embedded in the sparsely
vegetated mudflats. Patches embedded in both nonhost
grass matrix types had similarly high emigration losses,
but immigration tended to be higher for patches in
brome than in native nonhost grasses. The introduced
grass, brome, istaller than the native matrix vegetation
and comparable in stature to cordgrass (Fig. 1). Inter-



November 2003

estingly, most other studies have found the opposite
relationship between matrix complexity and interpatch
movement (Kareiva 1985, Kuussaari et al. 1996, Moil-
anen and Hanski 1998, Pither and Taylor 1998, Roland
et al. 2000, Jonsen et al. 2001, Ricketts 2001). To gain
an understanding of this difference in dispersal behav-
ior, we examine below the processes of emigration and
immigration in the planthopper.

The mudflat-cordgrass boundary is much more dis-
tinct than the boundary formed between cordgrass and
the other two matrix types (Fig. 1). Within a cordgrass
patch, planthoppers redistribute themselves at random
(Cronin 2003b), but when near the mudflat edge, in-
dividuals tend to turn away (K. J. Haynes, unpublished
data); i.e., the patch edge is hard (Stamps et al. 1987).
In patches bordering nonhost grass, the edge is much
softer; planthopper individuals readily cross over into
the matrix and are unlikely ever to return (K. J. Haynes,
unpublished data). This pattern of low permeability in
patches with well-defined edges is supported by other
recent studies (e.g., Kuussaari et al. 1996, Haddad
1999). We surmise that the resemblance of nonhost
grasses to prairie cordgrass (especialy brome) is an
important factor promoting high patch permeability.
Perhaps it should be no surprise that previous studies
have found higher emigration rates into less complex
matrix types, because in those studies the most struc-
turally complex matrix is often the most different from
the host patch (e.g., closed forest vs. open fields for
the meadow-inhabiting Glanville fritillary; Kuussaari
et al. 1996).

The difference in patch-edge permeability among
matrix types may explain the matrix-dependent within-
patch distribution of planthoppers. Based on adiffusion
model framework, densities are predicted to accumu-
late against a low-permeability edge such as a mudflat
(Cantrell and Cosner 1999). These edge aggregations
can potentially affect population dynamics through in-
creased intra- and interspecific competition and altered
interactions with natural enemies (Fagan et al. 1999).
One example involves the planthopper’s primary par-
asitoid, Anagrus columbi (Hymenoptera: Mymaridae).
In mudflat-embedded patches, A. columbi avoids the
patch edge (density of foraging femalesis ~60% lower
at the patch edge than the patch interior, Cronin 2003a).
The refuge that exists for the planthoppers at the mud-
flat edge may explain the higher densities generally
found in mudflat-embedded, as compared to nonhost
grass-embedded patches (Cronin 2003a), and promote
outbreaks in these patches (see Kareiva and Odell
1987).

To date, most mechanistic explanations for edge ef-
fects have focused on patch quality, such as the mi-
croclimate, predator abundance or host plant quality at
the patch edge relative to the interior (e.g., Young and
Mitchell 1994, Cappuccino and Martin 1997, Rothman
and Roland 1998, McGeoch and Gaston 2000). In this
study, we did find that nitrogen content of leaves, a
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strong index of plant quality to many planthopper spe-
cies (reviewed in Cook and Denno 1994), was signif-
icantly higher on the edge than the interior of patches
bordering both mudflats and nonhost grasses (Fig. 3).
However, because the nitrogen edge effect was simi-
larly strong between the two matrix types, it was prob-
ably not the cause for the accumulation of planthoppers
on the mudflat as compared to the nonhost grass edge.
The matrix-dependent edge effect in planthopper den-
sity is likely due to other factors, including the avoid-
ance of parasitoids (see previous paragraph [Cronin
2003a]), or the edge permeability differences between
matrix types (see Fagan et al. 1999).

The relatively high immigration success of plant-
hoppers (both in terms of immigration rate and dis-
persal success) moving through structurally complex,
as opposed to simple, matrix typesislikely attributable
to their movement behavior in the matrix. In a study
in which individual planthoppers were tracked moving
through different habitat types (K. J. Haynesand J. T.
Cronin, unpublished data), we found that movement
paths were meandering through nonhost grasses (com-
plex matrix) and more linear through mudflats (simple
matrix) (see also Zalucki and Kitching 1982, Jonsen
and Taylor 2000, Goodwin and Fahrig 2002). There-
fore, after emigrating from an experimental source
patch embedded in mudflat, planthoppers may have
been likely to pass by the satellite patches 3 m away
without encountering them. The fate of these individ-
uals is unknown, but their success in locating a new
cordgrass patch does not improve relative to individ-
uals moving through nonhost grasses, even up to 50 m
(the maximum distance found between nearest neigh-
bor patches; J. T. Cronin, unpublished data). In con-
trast, planthoppers moving through either grass matrix
may have encountered satellite patches more often, due
to higher turning rates and (or) longer residence times
in the vicinity of the patches. Because planthoppers
have similar survival rates when caged (without pred-
ators) on nonhost matrix plants and mudflat (K. J.
Haynes, unpublished data), differencesin immigration
success among matrix types are not due to differences
in habitat harshness. Finally, predation was also un-
likely to explain differential immigration rates because
predators were almost nonexistent in the mudflats
where immigration rates were the lowest.

Based on the patterns of emigration and immigration,
we infer that the connectivity among cordgrass patches
would be highest within a brome matrix, and lowest
within a mudflat matrix. Patches in a native grass ma-
trix would have intermediate connectivity. Although
this assessment of connectivity applies to patches that
are only 3 m apart, a mark—recapture study in an on-
going field experiment has revealed that this pattern is
upheld for patches separated by up to 50 m (J. T. Cro-
nin, unpublished data). The implications of these dif-
ferences in connectivity are addressed below.
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Among-patch distribution of planthoppers

Traditionally, studies involving patchily distributed
populations have emphasized the importance of patch
size and isolation in determining their distributions (see
Hanski 1999). The roles of other landscape-level fac-
tors such as the matrix rarely have been considered
(but see, e.g., Kuussaari et al. 1996, Moilanen and Han-
ski 1998), but their inclusion in spatial population stud-
ies may be crucial to understanding species distribu-
tions among patches (Wiens et al. 1993, Wiens 1997
but see Molainen and Hanski 1998). In our study sys-
tem, patch geography (primarily patch size) and matrix
composition contributed approximately equally toward
explaining the variation in planthopper density distri-
butions and incidence among patches. In general, large
patches that were embedded in a predomi nantly mudflat
matrix had the highest probability of being occupied
and the greatest planthopper density. The explanatory
power of the these two variables was generally low
within a generation, but improved greatly when ex-
tended over five generations (from ~14% to 34% of
the variation explained). We conclude that the matrix
does matter (see Ricketts 2001), not only to the plant-
hopper’s patterns of interpatch movement, but also to
their spatial distributions. Bach (1984) reported a sim-
ilar finding in her study of factors influencing the dis-
tribution of the chrysomelid beetle Acalymma innub-
um: the matrix was more important than the effect of
patch size. In contrast, both Kareiva (1985) and Moil-
anen and Hanski (1998) found the matrix to be un-
important relative to patch structure (size, isolation) in
determining the distribution of their respective study
organisms (Phyllotreta flea beetles and the Glanville
fritillary). We are aware of no other studies that as-
sessed the relative importance of patch size, patch iso-
lation, and the matrix to the distributions of species
among patches. If future studies add credence to our
conclusions that the matrix matters relative to patch
geography, then conservation programs may need to
focus not only on protecting patches and providing
corridors or stepping stones between them, but also on
the quality of the matrix (e.g., Janzen 1983, Saunders
et al. 1991, Wiens 1997).

In North Dakota tallgrass prairies, matrix type and
patch quality are interrelated. The increase in plant-
hopper density or patch occupancy with an increase in
the proportion of mud in the matrix could have been
due to the direct effects of the matrix on planthopper
movement. In particular, the low permeability of a
mudflat—cordgrass edge could have resulted in the re-
tention and buildup of planthoppers within those patch-
es (see also Moilanen and Hanski 1998). Alternatively,
plant quality may have been partially, or wholly, re-
sponsible for the increased density and occupancy of
planthoppers on cordgrass patches in mudflat; mudflat
patches relative to nonhost grass-embedded patches
have a 10% higher leaf-nitrogen content. In general,
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planthopper species are known to build up densities on
nitrogen-rich patches, either via increased survivor-
ship/reproduction or reduced emigration (reviewed in
Cook and Denno 1994). Although we have not assessed
the impact of a 10% difference in plant nitrogen on P.
crocea movement or performance, a field census with
the congener P. marginata (Denno et al. 1980) indi-
cated that small changes in nitrogen levels can have
appreciable effects on planthopper distributions. Moil-
anen and Hanski’s (1998) work with the Glanville frit-
illary is one of the few studies to evaluate the effect
of patch quality (based on several environmental var-
iables) and matrix composition on herbivore distribu-
tions among patches. In this study, patch quality was
deemed more important than the matrix; however, the
two factors were evaluated separately and no testswere
performed to determine if they were correlated. An
important avenue of future research in landscape ecol-
ogy would be to address the likely interactions that
exist between the matrix and plant quality, and quantify
their direct and interactive effects on metapopulation
structure and dynamics (K. J. Haynes and J. T. Cronin,
unpublished manuscript).

Besides matrix composition and patch geography,
what other factors might contribute to the considerable
amount of unexplained variation in planthopper abun-
dances among patches? In light of the previous para-
graph, spatial variation in host plant nutritional quality
(e.g., leaf-nitrogen content) may play a major role in
affecting planthopper distributions. The nitrogen con-
centration of host plants is believed to play a strong
role in the population dynamics of phloem-feeding in-
sects such as planthoppers (reviewed in Cook and Den-
no 1994). For example, studies with the conspecific
planthoppers P. dolus and P. marginata, which feed
on S alterniflora, suggest that plant nutritional quality
has stronger effects on planthopper distributions and
population dynamics than top-down factors such as spi-
der predators (Denno et al. 2002) or the egg parasitoid
A. sophiae (Moon and Stiling 2002). However, top-
down effects from spiders can have strong effects on
planthopper density, particularly if the vegetation is
sufficiently complex (i.e., if thatch is present) and if
host plant nutritional quality islow (Denno et al. 2002).
For bottom-up and top-down effects to improve our
predictions about the distribution of planthoppers
among patches, they must also vary across the land-
scape. In our system, the effect of plant quality on
planthopper distributions is currently under investi-
gation. However, we do know that the abundance of
spiders in cordgrass patches is negatively correlated
with patch size and independent of patch isolation and
matrix composition (J. T. Cronin, unpublished manu-
script). The high extinction rate found for small cord-
grass patches (Cronin 2003b) may be attributable to
both lethal and nonlethal (predator-induced dispersal)
effects of spiders (J. T. Cronin, unpublished manu-
script). In contrast to these predators, A. columbi, the
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dominant parasitoid of the planthopper, has little im-
pact on the among-patch distribution of its host. In
general, the distribution of A. columbi simply mirrors
that of the planthopper (Cronin 2003a).

Invasion of smooth brome into the prairie

Anthropogenic activities in natural landscapes not
only have direct effects on patch connectivity (by al-
tering patch geography), but also can affect connectiv-
ity through their influence on matrix composition and
quality. Exotic plants, which are becoming increasingly
dominant in human-disturbed landscapes (Drake et al.
1989, D’ Antonio and Vitousek 1992), may have a sub-
stantial impact on the landscape matrix. In our study
system, mudflat and native nonhost grasses do not dif-
fer considerably in their effects on planthopper con-
nectivity among cordgrass patches. Astraditional meta-
population models have implicitly assumed (Hanski
1999), these native habitat types combine to form a
relatively homogeneous matrix through which the
planthopper disperses. The invasion of smooth brome
into the prairie landscape likely results in a significant
increase in matrix heterogeneity; a brome-dominated
landscape has significantly greater connectivity than a
mudflat-dominated landscape. The long-term conse-
quences of the introduction and spread of smooth
brome to the regional dynamics of the planthopper are
potentially significant. High connectivity of local pop-
ulations embedded in a brome matrix may help to pre-
vent local extinctions (via the rescue effect) and in-
crease global metapopulation stability (Brown and Ko-
dric-Brown 1977). Alternatively, high connectivity
may increase the risk of metapopulation extinction by
increasing the synchronization of local populations
(Harrison and Quinn 1989, Grenfell et al. 1995). We
are currently investigating the spatial and temporal
population dynamics of the planthopper in large-scale
experimentally created brome and mudflat landscapes.
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APPENDIX A
A description of the sampling methods used to quantify the planthopper’s within-patch distribution is available in ESA’'s

Electronic Data Archive: Ecological Archives E084-075-A1.

APPENDIX B
Patch census procedure and the analyses of planthopper distributions in nature are available in ESA’'s Electronic Data

Archive: Ecological Archives: E084-075-A2.



